Ibogamine
The Tabernaemontana species reported to contain ibogamine in van Beek's 1984 review were: amblyocarpa, apoda, bufalina, citrifolia, coffeoides, crassa, crassifolia, diuuricata, heyneana, olivacea, pandacaqui, quadrangularis, retusa, sananho and stapfiana.
This can be produced from coronaridine using the same process for converting voacangine into ibogaine.
...
Tabernanthine
The only Tabernaemontana species reported to contain tabernanthine in van Beek's 1984 review were: crassifolia and pandacaqui.
Tabernanthine can be produced from isovoacangine using the same process for converting voacangine into ibogaine.
Isovoacangine has been reported to be present in Stemmadenia donnell-smithii, and also, according to van Beek's 1984 review, Tabernaemontana amblyocarpa, apoda, arborea, attenuata, coffeoides, crassa, divaricata, eglandulosa, longiflora, orientalis, pandacaqui, sessilifolia, siphilitica, stapfiana and wallichiana.
T. psychotrifolia in the above paper had 0.32 g coronaridine (0.03%) and 0.5 g voacangine (0.04%) from 11.9 g alkaloid from 1.2 kg of ground root.
T. oppositifolia in the above paper had 300 mg ibogamine (0.025%), 70 mg coronaridine (0.006%) and 75 mg voacangine (0.006%) from 3.5 g alkaloid from 1.2 kg of ground root.
T. australis in the above paper had 1.88 g voacangine (0.05%) from 3.5 kg of stems.
T. undulata in the above paper had 1.83 g alkaloid from 1.3 kg of stems.
In the above paper, coronaridine was efficiently decarboxylated to ibogamine in 60% ethanol with potassium hydroxide.
In post: "Tabernaemontana heyneana yielded coronaridine (0.13%) (antifertility activity in female rats, estrogenic), voacangine (0.02%)
...
Voacangine
As with the Tabernaemontana there has been a lot of confusion about the species within this genus, many also having various synonyms and type specimens. It is a mostly African and Asian genus, with only one species recorded from nth Qld, Voacanga grandifolia, for which V. papuana is a synonym. This species is recorded from New Guinea, Indonesia and the Phillipines as well. It is described as not only the most widespread Asian species, but also one of the most variable.
There is an extended discussion of the alkaloids found in this genus, including their biogenesis and pharmacology.
In one species ( V. africana ) the alkaloid content has been reported as 5-10% in root bark, 4-5% in trunk bark, 0.3-0.45% in leaves and 1.5% in seeds. From a specimen of V. grandifolia in India some indication of how the alkaloid content varied over the year was recorded, for the root and trunk bark, mar was the minimum, going up to secondary maximum in jun, then falling again in jul and peaking in nov. The leaves and fruit recorded a similar pattern, though the age of the individual leaves affected the alkaloid content. The types of alkaloids recorded was very similar to those found in Tabernanthe and Tabernaemontana. For V. grandifolia the following results of alkaloid analysis are given...
...
Tabernanthine
The only Tabernaemontana species reported to contain tabernanthine in van Beek's 1984 review were: crassifolia and pandacaqui.
Tabernanthine can be produced from isovoacangine using the same process for converting voacangine into ibogaine.
Isovoacangine has been reported to be present in Stemmadenia donnell-smithii, and also, according to van Beek's 1984 review, Tabernaemontana amblyocarpa, apoda, arborea, attenuata, coffeoides, crassa, divaricata, eglandulosa, longiflora, orientalis, pandacaqui, sessilifolia, siphilitica, stapfiana and wallichiana.
Ibogaline
Potentially from Tabernaemontana pachysiphon (T. humblotii; Giant Pinwheel Flower):
Although ibogaline is scarce in nature, with Van Beek's 1984 review mentioning it in only one Tabernaemontana species, T. humblotii leaf, more comonly known as T. pachysiphon, it should be simple to convert conopharyngine into ibogaline in the same way that voacangine is converted into ibogaine. Carroll and Starmer's 1967 paper claims that conopharyngine is "the major alkaloid present in the leaves of Tabernaemontana (Conopharyngia) pachysiphon var. cumminsi (Stapf) H. Huber" according to this reference: "THOMAS, J. & STARMER, G. A. (1963). The isolation and identification of the major alkaloid present in Tabernaemontana pachysiphon stapf var cumminsi (stapf) H. Huber. J. Pharm. Pharmac., 15, 487". However, a slightly later reference did not mention finding any conopharyngine at all: "Growth and Alkaloid Contents in Leaves of Tabernaemontana pachysiphon Stapf (Apocynaceae) as Influenced by Light Intensity, Water and Nutrient Supply, M. Hoft, R. Verpoorte and E. Beck, Oecologia, Vol. 107, No. 2 (1996), pp. 160-169". In a discouraging post, the prominent member Jacky on opiophile reported going to the extraordinary effort to have kilograms of dried leaf extracted by a chemist, who found the alkaloids scarce and laborious to process. Despite all this effort, Jacky didn't report any useful effects from the extract or up to 60 g of the leaf itself.
Other Tabernaemontana species reported to contain conopharyngine in van Beek's 1984 review were: attenuata, contorta, crassa, eglandulosa, fuchsiifolia, longiflora, orientalis and penduliflora. Though not noted among specied containing conopharyngine, Table 5 has a note saying that T. Ventricosa is "suitable for extracting conopharyngine" - which makes it sound most promising, as it may be so scarce as to only be detectable, but not isolatable, in other species. The reference (145) for this claim is: J.R. Geigy A.G. (U. Renner and D.A. Prins) (1962) Deutsche Auslegeschrift 1 129 500 (17/5/62).
http://www.puzzlepiece.o...bogaine/notes/notes.html